

UK Research and Innovation

Additive manufacturing of mirror components for space

Carolyn Atkins et al. UK Astronomy Technology Centre

CEOI Emerging Technologies conference: 1st - 2nd May 2019

carolyn.atkins@stfc.ac.uk

Contributions

UK Astronomy Technology Centre: Stephen Watson, William Cochrane

University College London: David Brooks

University of Leicester: Charlotte Feldman

RAL Space: Mat Beardsley, Michael Harris

Central Laser Facility: Christopher Spindloe

Diamond Light Source: Simon Alcock, Ioana Nistea

European synchrotron radiation facility: Christian Morawe, F. Perrin

Laboratoire d'astrophysique de Marseille: Melanie Roulet

National Physical Laboratory: Wenjuan Sun, Peter Cooper

University of Sheffield: Robert Snell

Context

This presentation is linked to the poster presented yesterday: *Additively manufactured mirrors for CubeSats*

The results described in this presentation highlight the optical performance expectation for the CubeSat substrates.

Outline

- 1. Motivation and approach
- AM mirror example #1 good surface roughness can be achieved
- 3. AM mirror example #2 lightweighting comparison
- 4. Conclusion

Motivation: why additive manufacturing?

To utilise the design freedom of AM to create bespoke hardware that is more tailored to function than tailored to manufacturability.

Question: Why create mirrors via AM?

To develop mirrors more suited to their environmental constraints:

- Optimised light-weighting
- Integrated mounting or functionality.

Question: Why create AM mirrors for space?

- Reduce weight
- Optimise volume use
- Demise-ability

Approach

3.

4.

- 1. CAD
- 2. STL
- File transfer to machine 3.
- Machine setup 4.
- Build 5.
- 6. Remove
- Post-process (polish) 7.
- Application 8.

7.

Outline

- 1. Motivation
- AM mirror example #1 good surface roughness can be achieved
- AM mirror example #2 lightweighting comparison
 Conclusion

AM Example #1: the aluminium mirror

Dimensions: 40mm in diameter, 6mm in height, **optically flat** Material: aluminium (AlSi₁₀Mg) Lightweight percentage: ~44% mass remaining (ratio = 9g/20.36g) Single Point Diamond Turning: RAL Space PDF

Diamond-turned AM mirror

- Facility: Diamond Light Source
- Instrument: Bruker Contour GT-X stitching microinterferometer
- 3 magnifications evaluated: 5x, 10x

10x magnification

Surface roughness data

Surface roughness measurements								
3x3 Grid	5x magnification		10x magnification		50x magnification			
	RMS[nm]	PV[nm]	RMS[nm]	PV[nm]	RMS[nm]	PV[nm]		
Ave.	3.28	91.41	3.66	117.95	3.84	40.56		
Max.	5.00	105.82	4.80	232.40	4.92	66.25		
Min.	2.55	67.04	3.14	60.27	3.10	24.08		

... these are good values for aluminium, where's the porosity?

-

Porosity visible under the optical surface

X-ray computer tomography data – credit NPL

Outline

- 1. Motivation
- 2. AM mirror example #1 good surface roughness can be achieved
- AM mirror example #2 lightweighting comparison
 Conclusion

Design optimisation

40mm diameter, 6mm in height, top and bottom substrate thickness 1mm.

Core research discussed in: *Atkins, C. et al.,* "Additive manufactured x-ray optics for astronomy", Proc. SPIE 10399, 103991G, 2017. 40mm diameter, 5mm in height, top and bottom substrate thickness 0.5mm.

Design output from topology optimisation – light-weighting designed to compensate for polishing pressure

Design comparison

Material: AM aluminium (AlSi₁₀Mg) Coating: nickel phosphorous (NiP) ***** Diameter: 40mm Ensures a pore free surface to polish

Substrate thickness: 1mm Weight: 14.3g

Substrate thickness: 0.5mm Weight: 11.7g

Form error after polishing

Surface form error:

- Facility: European Synchrotron Radiation Facility
- Instrument: ZYGO GPI XPZ, λ = 632.8nm

Does the light-weighting printthrough?

Profilometry data:

- Facility: Glyndwr Innovations
- Instrument: Taylor Hobson Form Talysurf Intra.

Measurement data from AlSi10Mg + NiP in the 0 and 90 degree orientation

Measurement data from AISi10Mg + NiP in the 45 and 135 degree orientation

Optical form

Form error	Non-optimised	Optimised				
PV [nm]	323.25	203.88				
RMS [nm]	83.07	31.45				
Weight [g]	14.3	11.7				
Roughness [x5 magnification]						
RMS [nm]	3.37	6.04				
Print-through of light-weighting [FFT]						
Amplitude [nm]	<10nm	~10nm				

Take away

- 1. Reasonable form error can be achieved using AM substrates.
- 2. Computer optimisation is worth the time investment.

These results demonstrate a first effort in this research area

Outline

- 1. Motivation
- 2. AM mirror example #1 good surface roughness can be achieved
- 3. AM mirror example #2 light-weighting comparison
- 4. Conclusion

Predicted impact

- Access to missions:
 - Use of AM mirrors could be applied where ever optical elements are required within a system.
- Mission enablement:
 - Allows more innovative, weight saving designs.
 - Cost AM mirrors are no more expensive than traditional lightweight mirrors, perhaps less so.
 - Less weight per aperture area.
- Science enablement:
 - Larger collection area for a given mass restriction.
- Commercial:
 - Many of the big companies already have the required AM capability to build these parts.

Acknowledgements

- Part of this research was funded by the **UK Space Agency** National Space Technology Programme via a Pathfinder grant – NSTP3 PF 007.
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665593 awarded to the Science and Technology Facilities Council.
- C. Atkins acknowledges the STFC Rutherford International Fellowship for the freedom to do this research.
- Authors are grateful to the Department for Business, Energy & Industrial Strategy and their support of the National Measurement System Programme which funded part of this work.
- **Glyndwr Innovations** for the use of metrology equipment

UK SPACE AGENCY

European Union funding for Research & Innovation

Rutherford International Fellowship Programme

Science & Technology **Facilities** Council